Determine the order of each matrix.

1. $\left[\begin{array}{ccc}-1 & 3 & 5 \\ 0 & -9 & 4\end{array}\right]$
2. $\left[\begin{array}{l}1 \\ 5 \\ 9\end{array}\right]$

Find (a) $A+B$, (b) $A-B$, (c) $3 A$, and (d) $2 A-3 B$.
3. $A=\left[\begin{array}{lll}1 & -1 & 2 \\ 3 & -2 & 1\end{array}\right] \quad B=\left[\begin{array}{ccc}0 & -1 & -1 \\ -2 & 2 & 5\end{array}\right]$

Use the definition of matrix multiplication to find (a) AB and (b) BA. (Show your work)
4. $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 0\end{array}\right] \quad B=\left[\begin{array}{cc}3 & -2 \\ 1 & 4\end{array}\right]$
5. $A=\left[\begin{array}{cc}4 & 2 \\ -1 & -3 \\ 2 & -1\end{array}\right] \quad B=\left[\begin{array}{lll}-2 & 2 & 0\end{array}\right]$

Solve for a and b.
6. $\left[\begin{array}{cc}2 & -1 \\ 4 a-3 & -3 \\ 4 & 19\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -19 & -3 \\ 4 & 15 b-4\end{array}\right]$
7. $\left[\begin{array}{ccc}17 & 3 & -22 \\ 6 b-2 & 3 & -16\end{array}\right]=\left[\begin{array}{ccc}17 & -2 a+13 & -22 \\ -32 & 3 & -16\end{array}\right]$

Find the determinant and inverse of the matrix if it has one, or state the inverse does not exist.
8. $\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$
9. $\left[\begin{array}{cc}-6 & 3 \\ 7 & -4\end{array}\right]$
10. $\left[\begin{array}{ccc}-3 & 1 & 0 \\ 2 & 0 & -2 \\ 4 & -3 & 1\end{array}\right]$
11. Are the following matrices Inverses?

$$
\left[\begin{array}{cc}
-1 & -2 \\
3 & 4
\end{array}\right] \quad\left[\begin{array}{cc}
2 & 1 \\
-1.5 & -0.5
\end{array}\right]
$$

Perform the indicated elementary row operation on the matrix.

$$
\left[\begin{array}{cccc}
4 & -2 & 3 & 2 \\
1 & 0 & 2 & 3 \\
-5 & 6 & 2 & 1
\end{array}\right]
$$

12. R_{12}
13. $R_{1}+R_{2}$
14. $(-3) R_{3}+R_{1}$
15. $\left(\frac{1}{3}\right) R_{2}$

Solve the system of equations by finding the reduced row echelon form.
16. $3 x-5 y=25$
$2 x+4 y=24$
17. $x+y+z=2$
$2 x+3 y+z=7$

I CAN solve a system of equations using inverse matrices.

Solve the system of equations by using an inverse matrix.
18. $4 x-6 y=1$
$3 x-5 y=5$
19. $x-5 y+3 z=2$
$2 x-3 y-z=1$
$-2 x+2 y+z=12$

I CAN solve systems of linear equations using inverse matrices.

At Philip's convenience store the total cost of one medium and one large soda is \$1.74. The large soda costs \$0.16 more than the medium soda. What is the cost of each size of soda?

Write a matrix equation and use the inverse to solve.

A 5-lb nut mixture is worth $\mathbf{\$ 2 . 8 0}$ per pound. The mixture contains peanuts worth $\mathbf{\$ 1 . 7 0}$ per pound and cashews worth $\$ 4.55$ per pound. How many pounds of each type of nut are in the mixture? Write a system of equation and solve using inverses. Then solve using RREF.

